最优化方法
最优化方法1 引言1.1 基础概念 基础数学模型: $$\min f(x)$$ $$\text{s.t. }\mathbf{x}\in \Omega$$ $$\Omega ={\mathbf{x}\in\R^n|c_i(\bold{x})}$$ 线性规划问题:目标函数与约束函数都是线性的规划问题 非线性规划问题:数学模型中含有非线性函数的规划问题 可行点(可行解):满足约束条件的点 可行域(可行集)$\bold{S}$:全体可行点的集合 无约束问题:如果一个问题的可行域是整个空间 最优解:$\bold{x}^\in\Omega, \forall \bold{x}\in\Omega,f(\bold{x}^)\le f(\bold{x})$ 局部最优解:$\bold{x}^\in\Omega, \exist N(\bold{x}^,\delta),\forall \bold{x}\in N(\bold{x}^*,\delta)\cap\Omega, f(\bold{x}^*)\le f(\bold{x})$ 严格局部最优解:$\bold{x}^\in\Om...
Hello World
Welcome to Hexo! This is your very first post. Check documentation for more info. If you get any problems when using Hexo, you can find the answer in troubleshooting or you can ask me on GitHub. Quick StartCreate a new post1$ hexo new "My New Post" More info: Writing Run server1$ hexo server More info: Server Generate static files1$ hexo generate More info: Generating Deploy to remote sites1$ hexo deploy More info: Deployment